49 research outputs found

    Phenotypic spectrum and transcriptomic profile associated with germline variants in TRAF7

    Get PDF
    PURPOSE: Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma, while germline variants have recently been identified in seven patients with developmental delay and cardiac, facial, and digital anomalies. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants in a large series of patients, and to determine the molecular effects of the variants through transcriptomic analysis of patient fibroblasts. METHODS: We performed exome, targeted capture, and Sanger sequencing of patients with undiagnosed developmental disorders, in multiple independent diagnostic or research centers. Phenotypic and mutational comparisons were facilitated through data exchange platforms. Whole-transcriptome sequencing was performed on RNA from patient- and control-derived fibroblasts. RESULTS: We identified heterozygous missense variants in TRAF7 as the cause of a developmental delay-malformation syndrome in 45 patients. Major features include a recognizable facial gestalt (characterized in particular by blepharophimosis), short neck, pectus carinatum, digital deviations, and patent ductus arteriosus. Almost all variants occur in the WD40 repeats and most are recurrent. Several differentially expressed genes were identified in patient fibroblasts. CONCLUSION: We provide the first large-scale analysis of the clinical and mutational spectrum associated with the TRAF7 developmental syndrome, and we shed light on its molecular etiology through transcriptome studies

    The recurrent de novo c.2011C>T missense variant in MTSS2 causes syndromic intellectual disability

    No full text
    MTSS2, also known as MTSS1L, binds to plasma membranes and modulates their bending. MTSS2 is highly expressed in the central nervous system (CNS) and appears to be involved in activity-dependent synaptic plasticity. Variants in MTSS2 have not yet been associated with a human phenotype in OMIM. Here we report five individuals with the same heterozygous de novo variant in MTSS2 (GenBank: NM_138383.2: c.2011C>T [p.Arg671Trp]) identified by exome sequencing. The individuals present with global developmental delay, mild intellectual disability, ophthalmological anomalies, microcephaly or relative microcephaly, and shared mild facial dysmorphisms. Immunoblots of fibroblasts from two affected individuals revealed that the variant does not significantly alter MTSS2 levels. We modeled the variant in Drosophila and showed that the fly ortholog missing-in-metastasis (mim) was widely expressed in most neurons and a subset of glia of the CNS. Loss of mim led to a reduction in lifespan, impaired locomotor behavior, and reduced synaptic transmission in adult flies. Expression of the human MTSS2 reference cDNA rescued the mim loss-of-function (LoF) phenotypes, whereas the c.2011C>T variant had decreased rescue ability compared to the reference, suggesting it is a partial LoF allele. However, elevated expression of the variant, but not the reference MTSS2 cDNA, led to similar defects as observed by mim LoF, suggesting that the variant is toxic and may act as a dominant-negative allele when expressed in flies. In summary, our findings support that mim is important for appropriate neural function, and that the MTSS2 c.2011C>T variant causes a syndromic form of intellectual disability

    De novo mutations in TOMM70, a receptor of the mitochondrial import translocase, cause neurological impairment

    No full text
    The Translocase of Outer Mitochondrial Membrane (TOMM) complex is the entry gate for virtually all mitochondrial proteins and is essential to build the mitochondrial proteome. TOMM70 is a receptor that assists mainly in mitochondrial protein import. Here, we report two individuals with de novo variants in the C-terminal region of TOMM70. While both individuals exhibited shared symptoms including hypotonia, hyperreflexia, ataxia, dystonia, and significant white matter abnormalities, there were differences between the two individuals, most prominently the age of symptom onset. Both individuals were undiagnosed despite extensive genetics workups. Individual 1, was found to have a p.Thr607Ile variant while individual 2 was found to have a p.Ile554Phe variant in TOMM70. To functionally assess both TOMM70 variants, we replaced the Drosophila Tom70 coding region with a Kozak-mini-GAL4 transgene using CRISPR-Cas9. Homozygous mutant animals die as pupae, but lethality is rescued by the mini-GAL4 driven expression of human UAS-TOMM70 cDNA. Both modeled variants lead to significantly less rescue indicating that they are loss-of-function alleles. Similarly, RNAi-mediated knock-down of Tom70 in the developing eye causes roughening and synaptic transmission defect, common findings in neurodegenerative and mitochondrial disorders. These phenotypes were rescued by the reference, but not the variants, of TOMM70. Altogether, our data indicate that de novo loss-of-function variants in TOMM70 result in variable white matter disease and neurological phenotypes in affected individuals

    Spectrum of neurodevelopmental disease associated with the GNAO1 guanosine triphosphate-binding region

    No full text
    Objective:To characterize the phenotypic spectrum associated withGNAO1vari-ants and establish genotype‐protein structure‐phenotype relationships. Methods:We evaluated the phenotypes of 14 patients withGNAO1variants, ana-lyzed their variants for potential pathogenici ty, and mapped them, along withthose in the literature, on a three‐dimensional structural protein model.Results:The 14 patients in our cohort, including one sibling pair, had 13 distinct,heterozygousGNAO1variants classified as pathogenic or likely pathogenic. Weattributed the same variant in two siblings to parental mosaicism. Patients initiallypresented with seizures beginning in the first 3 months of life (8/14), developmen-tal delay (4/14), hypotonia (1/14), or movement disorder (1/14). All patients hadhypotonia and developmental delay ranging from mild to severe. Nine had epi-lepsy, and nine had movement disorders, including dystonia, ataxia, chorea, anddyskinesia. The 13GNAO1variants in our patients are predicted to result inamino acid substitutions or deletions in the GNAO1 guanosine triphosphate(GTP)‐binding region, analogous to those in previous publications. Patients withvariants affecting amino acids 207‐221 had only movement disorder andhypotonia. Patients with variants affecting the C‐terminal region had the mildestphenotypes.Significance:GNAO1encephalopathy most frequently presents with seizuresbeginning in the first 3 months of life. Concurrent movement disorders are also aprominent feature in the spectrum ofGNAO1encephalopathy. All variantsaffected the GTP‐binding domain of GNAO1, highlighting the importance of thisregion for G‐protein signaling and neurodevelopment

    Expanding the phenotypic spectrum of GABRG2 variants : a recurrent GABRG2 missense variant associated with a severe phenotype

    No full text
    Pathogenic missense and truncating variants in the GABRG2 gene cause a spectrum of epilepsies, from Dravet syndrome to milder simple febrile seizures. In most cases, pathogenic missense variants in the GABRG2 gene segregate with a febrile seizure phenotype. In this case series, we report a recurrent, de novo missense variant (c0.316 G > A; p.A106T) in the GABRG2 gene that was identified in five unrelated individuals. These patients were described to have a more severe phenotype than previously reported for GABRG2 missense variants. Common features include variable early-onset seizures, significant motor and speech delays, intellectual disability, hypotonia, movement disorder, dysmorphic features and vision/ocular issues. Our report further explores a recurrent pathogenic missense variant within the GABRG2 variant family and broadens the spectrum of associated phenotypes for GABRG2-associated disorders
    corecore